On the Betti Numbers of Shifted Complexes of Stable Simplicial Complexes
نویسندگان
چکیده
Let ∆ be a stable simplicial complex on n vertexes. Over an arbitrary base field K, the symmetric algebraic shifted complex ∆s of ∆ is defined. It is proved that the Betti numbers of the Stanley-Reisner ideals in the polynomial ring K[x1, x2, . . . , xn] of the symmetric algebraic shifted, exterior algebraic shifted and combinatorial shifted complexes of ∆ are equal.
منابع مشابه
On a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملLaplacians on Shifted Multicomplexes
The Laplacian of an undirected graph is a square matrix, whose eigenvalues yield important information. We can regard graphs as one-dimensional simplicial complexes, and as whether there is a generalisation of the Laplacian operator to simplicial complexes. It turns out that there is, and that is useful for calculating real Betti numbers [8]. Duval and Reiner [5] have studied Laplacians of a sp...
متن کاملIterated Homology of Simplicial Complexes
We develop an iterated homology theory for simplicial complexes. This theory is a variation on one due to Kalai. For 1 a simplicial complex of dimension d − 1, and each r = 0, . . . , d , we define r th iterated homology groups of 1. When r = 0, this corresponds to ordinary homology. If 1 is a cone over 1′, then when r = 1, we get the homology of 1′. If a simplicial complex is (nonpure) shellab...
متن کاملBetti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals
In this paper, we will show that the color-squarefree operation does not change the graded Betti numbers of strongly color-stable ideals. In addition, we will give an example of a nonpure balanced complex which shows that colored algebraic shifting, which was introduced by Babson and Novik, does not always preserve the dimension of reduced homology groups of balanced simplicial complexes.
متن کامل